翻訳と辞書
Words near each other
・ Orthogonal coordinates
・ Orthogonal Defect Classification
・ Orthogonal diagonalization
・ Orthogonal frequency-division multiple access
・ Orthogonal frequency-division multiplexing
・ Orthogonal functions
・ Orthogonal group
・ Orthogonal instruction set
・ Orthogonal matrix
・ Orthogonal polarization spectral imaging
・ Orthogonal polynomials
・ Orthogonal polynomials on the unit circle
・ Orthogonal Procrustes problem
・ Orthogonal symmetric Lie algebra
・ Orthogonal trajectory
Orthogonal transformation
・ Orthogonal wavelet
・ Orthogonality
・ Orthogonality (programming)
・ Orthogonality (term rewriting)
・ Orthogonality principle
・ Orthogonalization
・ Orthogonia
・ Orthogonia grisea
・ Orthogonia plana
・ Orthogonia plumbinotata
・ Orthogoniinae
・ Orthogonioptelum
・ Orthogoniosaurus
・ Orthogonius


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Orthogonal transformation : ウィキペディア英語版
Orthogonal transformation
In linear algebra, an orthogonal transformation is a linear transformation ''T'' : ''V'' → ''V'' on a real inner product space ''V'', that preserves the inner product. That is, for each pair of elements of ''V'', we have
: \langle u,v \rangle = \langle Tu,Tv \rangle \, .
Since the lengths of vectors and the angles between them are defined through the inner product, orthogonal transformations preserve lengths of vectors and angles between them. In particular, orthogonal transformations map orthonormal bases to orthonormal bases.
Orthogonal transformations in two- or three-dimensional Euclidean space are stiff rotations, reflections, or combinations of a rotation and a reflection (also known as improper rotations). Reflections are transformations that exchange left and right, similar to mirror images. The matrices corresponding to proper rotations (without reflection) have determinant +1. Transformations with reflection are represented by matrices with determinant −1. This allows the concept of rotation and reflection to be generalized to higher dimensions.
In finite-dimensional spaces, the matrix representation (with respect to an orthonormal basis) of an orthogonal transformation is an orthogonal matrix. Its rows are mutually orthogonal vectors with unit norm, so that the rows constitute an orthonormal basis of ''V''. The columns of the matrix form another orthonormal basis of ''V''.
The inverse of an orthogonal transformation is another orthogonal transformation. Its matrix representation is the transpose of the matrix representation of the original transformation.
==See also==

*Improper rotation
*Inner product
*Linear transformation
*Orthogonal matrix
*Unitary transformation

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Orthogonal transformation」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.